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Abstract: Engineering calculations of elements of the power transmission systems made of high-strength carbon-epoxy and 
carbon-aramid composites are very difficult due to the lack of reliable data concerning non-linear features of these materials. 
This paper presents a proposal of building and identifying a dynamic model of bi-supported drive shaft. A properly identified 
mathematical model allowed predicting dynamic behaviours at various velocities of start-up and braking. 

Modelowanie kompozytowych elementów przeniesienia mocy z uwzględnieniem nieliniowych 
charakterystyk materiałowych

Słowa kluczowe: konstrukcja wału maszynowego, kompozyt węglowy, model dynamiczny, prędkości krytyczne.

Streszczenie: Inżynierskie obliczenia elementów układów przeniesienia mocy wykonanych z wysokowytrzymałych kompo-
zytów węglowych i węglowo-aramidowych napotykają na znaczne trudności z powodu wiarygodnych danych dotyczących 
nieliniowych cech materiałowych. W pracy przedstawiono propozycję budowy i identyfikacji modelu dynamicznego dwupod-
porowego wału maszynowego. Dobrze zidentyfikowany model matematyczny pozwolił na predykcję zachowań dynamicznych 
przy różnych prędkościach rozruchu (hamowania).

Introduction

Widely understood plastics currently constitute 
an essential group of materials applied in engineering 
techniques. Composite materials are especially popular 
in machine building. This happens due to their material 
features that are often impossible to obtain in metallic 
elements. The main, extremely attractive, from the 
engineering point of view, property of these materials 
is the possibility of achieving high strength with low 
mass. Thus, the natural application domain of composite 
materials is in aviation and naval engineering (and more 
precisely yachting, in which composites dominated 
other materials). However, these are not the only 
application domains. A tendency of making machine 
parts, including power transmission systems, of high-
strength carbon-epoxy composites is currently observed. 

This fact creates new engineering challenges, since the 
actual knowledge, allowing for a comfortable designing 
of bearing elements contains essential gaps within the 
range of dynamic behaviours of high-speed systems, 
where applications of ultra-light materials seems 
attractive. It should be noticed that composite materials 
are anisotropic, which indicate non-linear features in 
elastic strains, are characterised by hysteresis at large 
strains and that they depend – to a large degree – on 
the applied technology and the shape and size of the 
element. This causes a lack of the well-defined similarity 
theory, and thus difficulties in transferring the laboratory 
results on ready elements of different shapes. 

The design engineer needs to know which data 
should be used use in designing such elements. 
Available information can be divided into two groups. 
Firstly, the theory of composite structures, attempting to 
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describe the problem starting from the micro-scale and 
leading to complicated dependencies (partial differential 
equations) [1–2], was lately developed. For the time 
being, this theory, which is undoubtedly increasing our 
knowledge, is difficult for engineering applications. 
Secondly, relatively numerous laboratory tests are 
published [3]; however because of the scale effect, 
they cannot be directly applied in practice. Information 
on how nonlinear disturbances of composite elements 
vibrations (often very weak) can be measured for the 
technical diagnostics [4] can be found much easier in 
the available references than analysis of the system 
dynamics under conditions of normal operations [5–6]. 
Thus, the designer can see patterns of existing structures, 
but the secrecy clause is valid there. The engineer who 
is supposed to construct a high-strength element to be 
subjected to dynamic forces can obtain only approximate 
material data, which is the most often linearized, e.g., an 
equivalent Young modulus [7].

Thus, every project task requires, apart preliminary 
approximate calculations, performing special 
investigation tests. The authors are of the opinion 
that it would be useful to have  enough verified (well-
identified) dynamic models to allow for a relatively 
easy simulation of expected behaviours under variable 
operation conditions. 

1. Investigated object

The above problems will be discussed on the 
example of the high-speed rotor shaft, i.e. the main 
element of power transmission systems. The rotor shaft 
made of carbon-epoxy composite with a relatively 
significant mass, placed in the middle of the shaft length, 
was the investigated object. The assumed geometrical 

dimensions (length: app. 1 m, diameter: 26 mm) are 
large enough in relation to the composite structure 
that the scale problem, which is one of difficulties 
at transferring the generalised laboratory results on 
real objects, is no longer a problem. The shaft was 
preliminarily ‘calculated’ by the simple engineering 
technique for averaged linear values (equivalent Young 
modulus Ez  =  100  GPa) as the equivalent of a steel 
shaft of the same indicator of the cross-section bending 
strength.  The questions were as follows:
1.	 Is it possible to apply in practice, with a certain 

assumed safety coefficient, the method of calculating 
the strength and stiffness simplified to the linear 
form?

2.	 Will the linear modelling allow for the accurate 
estimation the object behaviour in critical states? 

3.	 Are the widely-understood non-linear effects 
accompanying the shaft movement significant 
enough that they have an essential influence on the 
structure? How should these effects be modelled 
with the sufficient accuracy to obtain a model useful 
in the designing process allowing one to predict 
dynamic behaviours?  

The broad experimental program was performed 
on the research set-up (Fig. 1) in the Vibroacoustics 
Laboratory IPBM PW. The system was accelerated and 
decelerated at various rates within the range exceeding 
the first critical velocity, and the deflection in the central 
point of the shaft was recorded.  

First the examples of the results presented in  
Figure 2 will be discussed. On the left side, the process 
of the shaft acceleration with the velocity applied in 
practice at the ‘quiet’ start-up is presented. On the 
right side, the acceleration is maximally slowed down 
to obtain the result similar to the ‘static’ amplitude-
frequency characteristic. 

Fig. 1. Research set-up for testing critical velocities of shafts
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Fig. 2. Experimentally determined characteristic of the acceleration and braking of the composite shaft

* 	 For the sake of accuracy, it should be added that this happens 
for relatively small acceleration (braking) rates, considered 
in this example. For very high velocities the amplitudes are 
significantly decreasing, due to the system inertia. 

As known from the vibration theory, the frequency 
difference at which the critical state occurs at acceleration 
and braking is caused by the acceleration (braking) rate, 
while the difference in amplitudes is mainly caused  by 

unstable zones on the resonance curve of non-linear 
systems. The situation is pictorially shown in Figure 3*.

Fig. 3. Interpretation of various amplitude-frequency characteristics at accelerations and braking

Thus, the considered machine shaft has undoubtedly 
non-linear features [5–6, 8] and the model which will 
take these features sufficiently into account should be 
looked for. 

2. Proposition of the dynamic model

The light and elastic shaft (m = ~ 0.13 kg) is 
loaded by the heavy drive wheel (M =  1.5 kg) in the 
tested system. The difference in masses causes that it 
is possible to apply the discrete model (concentrated 
mass and weightless elastic element). As it is known, 
at the assumption of the linear elastic characteristic and 
omitting the torsional rigidity, the effect can be described 
by the system of equations:

	 	 (1)

where h and v  – horizontal and vertical coordinate, 
φ – rotation angle of the shaft.

For the need of determining the critical frequency, 
the constant rotational frequency  is usually 
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assumed, and the task is reduced to a rather trivial 
problem of equation solving: 

		                 (2)

where Ω = const.

In the considered case, the assumption of the 
equivalent Young modulus and the resulting  coefficient 
of elasticity allows one to only ascertain the critical 
velocity with an error from 12% to even 50%. 

As shown in paper [7], among others, the 
application of known rheological models does not allow 
for the accurate identification of pathways presented 
in Figure 2. Thus, it should be assumed that the non-
linear characteristic of elasticity and damping are given 
by a certain function developing into power series as 
follows: 

and that the angular velocity  

where ϕ(t) means the main linear component of the 
angular velocity, constant in a steady motion and 
variable during acceleration (braking), ψ(t) – is the 
velocity disturbance caused by an unbalance. 

Taking into account these dependences in the above 
equations (1) will cause huge complications. Even in 
the simplest possible case, when the expansion will be 
limited to the first four terms (with omitting rectangle 
terms and dividing functions concerning damping 
and elasticity), i.e. to the form:  and  

 and assuming ϕ(t)  =  Ωt  +  ψ(t),  
Ω = const the equations will be of the following form:

	 (3)

The identification task for this form consists of 
finding parameters ki..., ci  and function ψ(t), after 
introducing the proper metric allowing to compare 

pathways presented in figure 2 and solving this equation. 
The complexity of the solution procedure of this task 
was the reason for making an attempt to do sequential 
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identification, which means finding functions describing 
elasticity and damping for special cases describable by 
much simpler dependencies and using them later in the 
‘full’ simulation model.

3. Task of the dynamic model identification

The theoretical task of the parametric identification 
with a possibility of having a significant number 
of investigation results for various work conditions 
(e.g., various acceleration rates) is solvable; however, 

a large number of parameters looked for (especially 
when further approximations are reached) can cause 
identification ambiguity and calculation difficulties. 

Thus, the following reasoning will be performed. 
Let it be assumed that the acceleration time does not 
have an essential influence on the elasticity and damping 
characteristic, then an attempt of the preliminary 
identification of the simplified model with the assumption 

(t) = 0 is made. The empirically determined elastic 
characteristic for static deformation is assumed as the 
first approximation, and the viscous damping coefficient 
is calculated on the basis of damped vibrations (Fig. 4).

Fig. 4. 	 Determination of preliminary parameters of the model: a) Elastic characteristic of static deformations of exemplary 
profiles (profile W03/W33 was used in investigations), b) Determination of damping coefficient on the basis of 
damped vibrations

As can be seen, the elastic characteristic can be 
easily and with a high accuracy approximated to the 
odd-degree parabola, and viscous damping values are 
sufficiently accurate to be described by the pathways 
from Figure 4b, according the dependence

and		
                           (4)

a)

b)
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where – logarithmic damping decrement, Tw– period 
of damped vibrations, c – damping coefficient.

When the elasticity and damping characteristic 
obtained in such way are introduced into the equations  
(1) and the simulation in the Matlab®-Simulink 
program is performed, the non-linear model is obtained. 
However, in defiance of expectations, it cannot be tuned 

to pathways from Figure 2 without essential changes 
of the remaining parameters, i.e. mass and eccentric. 
Thereby the model is not identifiable in the permissible 
values collection. Since both values are determined with 
a high accuracy, the conclusion is drawn that another 
phenomenon that was not taken into account must be 
occurring in the proposed description of the investigated 
object (material) characteristic.

Fig. 5. 	 Effect of the simplified model identification for a very small acceleration rate

According to the authors [5–7], this phenomenon is 
the dependence of the elasticity force on the deformation 
rate. Thus, let it be assumed that the elasticity force in 
the first approximation is written in the following form:  

		
        (5)

Then, introducing Equation (5) into the previous 
equations (1) and looking for coefficient e2 from the 
condition of the distance minimization between the 

solution and observed pathways, the sufficient closeness 
can be obtained, and it occurs that this simple model 
is identifiable (Fig. 5). The elastic characteristic of the 
shaft obtained in such way is the spatial characteristic 
(plate of continuous and differentiable surface in 
domain , and its cross-sections have visible 
inflection points, which means that it constitutes the 
degrading-progressive characteristic. Therefore, a’priori 
identification is difficult (Fig. 6).

Fig. 6. 	 Characteristic of elasticity as a function of the shaft displacement and deformation rate 
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Now, it is assumed that the elastic influence and 
the damping force are not changing as the function of 
the acceleration rate of the system, which seems logical 
since both functions have the character of material 
features. The obtained values are introduced into the full 
spatial model .

It occurs that the model requires only insignificant 
tuning (mainly the eccentric parameter, difficult for 
measuring). The effect of the simulation in the Matlab®- 

-Simulink program, in the form of the amplitude-
frequency characteristic obtained from the model, 
corresponding to previously shown empirical 
investigations (Fig. 2a), is presented in Figure 7 as an 
example. Thus, it can be stated that, due to investigations, 
a well-identified dynamic model that allows for system 
analysis when critical states were taking place with 
various velocities was obtained and that the elastic 
characteristic that is adequate for the applied composite 
structure was found.

Fig. 7. 	 Simulation result by means of the identified dynamic model
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Fig. 8. Simulation investigations of effects of passing the 
critical state at high acceleration and braking rates 

The model can be used for investigations of various 
acceleration modes and the system behaviour in passing 
the critical state zone. An example of such a simulation, 
which is very useful in designing the power transmission 
systems, is shown in Fig. 8.

Conclusions

The tested machine shaft loaded by one 
concentrated mass occurred to be a non-linear system of 
an interesting elastic characteristic. It is worth drawing 
attention to one detail. The elastic force is presented in 
the applied description as the sum of two functions (one 
displacement dependent, another velocity dependent). 
This second member, from a formal point of view, has 
the same structure as the function concerning viscous 
damping. Thus, it would be possible to identify the 
model selecting an abstract damping coefficient being 
outside the permissible zone. However, in such model, 
it would be very difficult to interpret ‘physically’ the 
results, especially to extract the ‘adequate’ elasticity or 
damping from the description of visco-elastic features, 
which is necessary, e.g., when taking into account the 
stiffness of supports or when designing a vibration 
damper.

Of course, the accurate numerical values cannot 
be easily directly transferred to another shaft structure; 
however, in the qualitative respect, these results have 
a general meaning concerning the shape of the spatial 

characteristic of the elastic force as well as concerning 
the proposed method of the model identification. 
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